skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Donald R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 28, 2026
  2. Background:Achieving optimal glycemic control for persons with diabetes remains difficult. Real-world continuous glucose monitoring (CGM) data can illuminate previously underrecognized glycemic fluctuations. We aimed to characterize glucose trajectories in individuals with Type 1 and Type 2 diabetes, and to examine how baseline glycemic control, CGM usage frequency, and regional differences shape these patterns. Methods:We linked Dexcom CGM data (2015–2020) with Veterans Health Administration electronic health records, identifying 892 Type 1 and 1716 Type 2 diabetes patients. Analyses focused on the first three years of CGM use, encompassing over 2.1 million glucose readings. We explored temporal trends in average daily glucose and time-in-range values. Results:Both Type 1 and Type 2 cohorts exhibited a gradual rise in mean daily glucose over time, although higher CGM usage frequency was associated with lower overall glucose or attenuated increases. Notable weekly patterns emerged: Sundays consistently showed the highest glucose values, whereas Wednesdays tended to have the lowest. Seasonally, glycemic control deteriorated from October to February and rebounded from April to August, with more pronounced fluctuations in the Northeast compared to the Southwest U.S. Conclusions:Our findings underscore the importance of recognizing day-of-week and seasonal glycemic variations in diabetes management. Tailoring interventions to account for these real-world fluctuations may enhance patient engagement, optimize glycemic control, and ultimately improve health outcomes. 
    more » « less
    Free, publicly-accessible full text available May 24, 2026
  3. OBJECTIVETo characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODSCharacteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011–2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTST1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥ 90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and they resembled T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONSCharacteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates. 
    more » « less